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Abstract

Additive manufacturing has enabled component fabrication with unprecedented geometric and material com-

plexity. The focus of this paper is on the AM build optimization of short fiber reinforced polymers (SFRP)

components. Specifically, we consider optimization of the build direction, infill pattern and fiber orientation.

All three factors have a significant impact on the functional performance of the printed part, and significant

progress has been made on optimizing these independently. The objective of this paper is to consider all three

factors simultaneously, and explore their interdependency, within the context of thermal applications.

Towards this end, the underlying design parameters are identified, and a formal optimization problem is

posed, as an extension to the popular Solid Isotropic Material with Penalization (SIMP). Appropriate sensi-

tivity equations are derived, and an assembly-free finite element analysis is formulated. Results from several

numerical experiments are presented, highlighting the impact of build direction, infill topology and fiber ori-

entation on the performance of SFRP components.

1 Introduction

Additive manufacturing (AM) has opened new opportunities to create parts with unprecedented geometric

and material complexity. In AM, components are fabricated layer-by-layer, as opposed to a subtractive process

[15]. Fused deposition modeling (FDM) is one such AM process where a continuous thermoplastic (polymer)

filament is deposited layer-by-layer (see Figure 1(a)). With continuously improving materials and fabrication

technology, FDM is being used today to make functional parts for thermal and structural applications. For ex-

ample, Figure 1(b) illustrates a heat exchanger where FDM’s process capabilities are exploited to achieve large

surface to volume ratio. Further, in such applications, to enhance performance, the polymer is often infused

with short (typically, carbon) fibers [3] (Figure 1(c)).The functional properties of such short fiber reinforced

polymers (SFRP) components depend significantly on the fiber distribution and orientation. These can be con-

trolled in FDM by suitability modifying the raster path. Finally, to reduce print time and material usage, the

interior of such SFRP components is made porous via a suitable infill pattern (Figure 1(d)).
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The focus of this paper is on the build optimization of SFRP components. Specifically, the objective is to

optimize the build direction, the infill pattern and fiber orientation (raster path) for thermal applications (Fig-

ure 2). While significant progress has been made on each of these topics (for example, see [2] and [12]), the

objective here is to consider all three factors simultaneously.

Towards this end, the remainder of this paper is organized as follows.The literature review is carried out

in Section 2. This is followed by a discussion on problem formulation in Section 3. Results are discussed in

Section 4, with a concluding note in Section 5.

(a) Illustration of the fused deposition modeling
[37].

(b) A heat exchanger is printed using Carbon
fiber reinforcement. This illustrates some of the
recent advances in AM to print functional com-
ponents. The image portrays the infill strategy
used and the presence of fiber reinforcement in
the polymer matrix.

(c) Polymers are filled with fibers to en-
hance mechanical properties [42]

(d) Illustration of a general anatomy of
FDM.

Figure 1: Fused Deposition Modeling of Fiber-Filled Composites.

Build Direction ?

Infill ?

Figure 2: An SFRP component (wall mount) subject to thermal loading; the optimal build direction, infill
topology and fiber orientation must be determined.
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2 Literature Review

As discussed in the previous section, the objective here is to compute the optimal build direction, the infill

topology and fiber orientation, to improve functional performance of SFRP parts. Prior work related to the above

three build parameters is discussed next.

2.1 Build Direction

The build direction plays a significant role in the surface quality, print-time, and sacrificial support of FDM

components; see [2], [8],[27], [23], [25]. This paper focuses on the interplay between build direction and func-

tional performance of the part. For example, it is well known FDM introduces behavioral anisotropy [21],

primarily due to incomplete fusion adjoint layers. Umetani [36] proposed a structural analysis technique

based on a bending moment concept to optimize the build direction; however, isotropic material was assumed

for simplicity, i.e., fiber reinforcement was not considered. On the other hand, material anisotropy was con-

sidered by Erva [35] where the build direction was optimized to maximize structural safety factor using a

surrogate-optimization model; but, infill topology was not considered.

2.2 Infill Topology

A porous infill topology reduces material usage and print time. Optimized infill patterns have been consid-

ered by several authors. Martinez [20] proposed a stochastic method to generate compliant structures with a

voronoi infill. Steuben [33] proposed a implicit slicing method to produce components with tailored functional

properties. Recently, Chougrani [6] suggested a lattice infill for AM. Wu et al. [38] proposed a global optimiza-

tion framework to generate bone-like porous infill. They also proposed a two-scale simultaneous optimization

of shell-infill in the context of minimizing structural compliance [39]. Recently, Dapogny [7] performed a 2D

topology optimization considering specific infill patterns with anisotropic behavior. The limitation of prior

work is that they assume a pre-defined build direction, and associated anisotropy.

2.3 Fiber Orientation

The problem of optimizing fiber orientation angle has been addressed within the context laminar compos-

ites. Discrete material optimization (DMO) is one of the most popular approaches, where a list of a priori

directions (eg 0◦,±45◦,±90◦) [32] is used. This avoids local minima, but can result in sub-optimal results.

Interpolation schemes have also been suggested to overcome this limitation. Alternately, continuous fiber an-

gle optimization (CFAO) has also been proposed [4]. This offers greater design freedom, but can result in a

local minima. While the focus has been on laminar composites, there has been a recent increase in targeting

these methodologies for AM. For example, Brenken [5] recently observed that fibers orient preferentially in the

direction of extrusion of the filament from the print-nozzle, which provides a larger degree of control in the

material properties of the fabricated part. They also concluded that the effect of a layer-wise printing strategy
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combined with the preferential orientation of the fibers results in a complex mechanical behavior.

2.4 Paper Contributions

The main contribution of this paper is a comprehensive approach to the build optimization of thermally loaded

SFRP components by simultaneously considering the impact of build direction, infill topology and fiber orien-

tation. In particular, the current work extends the popular Solid Isotropic Material with Penalization (SIMP)

method [30]. The specific contributions are:

1. A formulation to obtain infill pattern, density and build direction for anisotropic FDM components based

on structural optimization.

2. An assembly-free finite element framework to analyze large scale structured mesh for heat conduction

problems with an emphasis on reducing memory footprint and hence computational cost.

3. A detailed parametric study on the obtained results to gain insights into the effects of build parameters.

3 Problem Formulation

We start by discussing the design variables used in our formulation. This leads to a discussion on the

optimization problem and sensitivity analysis. We then discuss the proposed algorithm and the finite element

solver.

3.1 Design Parameters

Build Direction

Due to the incomplete fusion between subsequent layers of deposited material, the thermal conductivity

tends to be lower in the direction of the build, leading to transversely isotropic properties. Prajapati [26]

proposed to model the effective thermal conductivity along the build direction via

1
kz

=
wa + w f

waka + w f k f
+

Rc

Lh
(1)

where kz is the thermal conductivity in the build direction, ka is the thermal conductivity of air, k f is the thermal

conductivity of the filament (with no fiber reinforcement), wa is the air-gap between rasters, w f is the width

of the raster. Rc is the contact resistance between adjacent layers and Lh is the layer height. Experimental

studies show Rc to be in the order of 500− 2000 [µKm2W−1] leading to kz/k f ≈ 0.6− 0.8. Similar decrease

in mechanical properties have been reported by Knoop [17] and Farzadi [11]. Observe that build-direction

anistropy is different from fiber induced anisotropy [42].
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In our formulation, we assume the part to have an initial build direction along the global Z-axis. We intro-

duce two design parameters α0 and β0 as Eulerian angles to capture the rotation of the build direction about

the global X and Y axis respectively via Equation 2. These two angle parameters are to be determined by the

optimizer.

~b = Rx(α0)Ry(β0)~z (2)

where Rx and Ry are standard rotation matrices.

Fiber Orientation

Next, we consider anisotropy due to fiber infill. Mulholland [24] reported thermal anisotropy of specific

SFRP materials (see Table1). Here k‖ is the thermal conductivity achieved along the principal direction of the

fibers, levaraging their higher conductivity and k⊥ can be attributed as the thermal conductivity imparted by

the filament matrix. Since k⊥/k‖ ≈ 0.13− 0.38, it is important to orient the fibers in an optimal fashion. As

observed in [5], fibers tend to orient along the direction of travel of the extrudate. This will be compounded

by the build direction induced anisotropy.

Material k‖[W/m-K] k⊥ [W/m-K]
Onyx 0.88 0.30

PA6-CuF-20 4.84 0.76
PA6-CuF-25 5.52 0.77

RTP 0299 X 137152 C NAT/BLK 5.00 1.50
RTP 0299 X 137077 C NAT/BLK 18.01 4.50

Table 1: Thermal Conductivity of Some SFRPs used in Fused Filament Fabrication

The finite element formulation used here (see later section) utilizes a geometrically congruent hexahedral

(voxel) mesh. Thus, every finite element e is assigned an orientation angle θe, on a plane perpendicular to

the build direction. This angle will be determined by the optimizer. The resulting conductivity matrix can be

expressed as:

[K]e = R~b(θe)K̂RT
~b
(θe) (3)

[K̂] =


k‖ 0 0

0 k⊥ 0

0 0 kz

 (4)

where [K̂] is the thermal conductivity matrix along the principal directions assumed to be coincident with

the global coordinates of the model. Combining the anisotropy due to layer-wise build ( as discussed in the

previous section) with that imparted by the fibers, we can see that kz/k‖ ≈ 0.08 − 0.31. Further, [R~b(θe)]

expresses the orientation of the infill fiber material with respect to the build direction.
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Infill Topology

Next we consider the parameterization of infill topology. Here, the evolution of the topology is modeled

using classic SIMP where each finite element e is assigned a density value ρe ∈ [0, 1]. A density value of one

denotes the presence of material, and zero its absence. The density is further penalized by a constant p relating

the material property via a power-law:

[k]e = [k0] + ρ
p
e (R(α0, β0, θe)([k̂]− [k0])R(α0, β0, θe)

T) (5)

where [k0] is a small thermal conductivity assigned to empty voxels to prevent singularities in the solver. We

penalize the model with p = 3. The rotation matrix is given by:

R(α0, β0, θe) =


1 0 0

0 cos(α0) − sin(α0)

0 sin(α0) cos(α0)




cos(β0) 0 sin(β0)

0 1 0

− sin(β0) 0 cos(β0)




cos(θe) − sin(θe) 0

sin(θe) cos(θe) 0

0 0 1

 (6)

Observe that Equation 5 combines the effect of build direction (α0 and β0), fiber orientation (θe) and infill

density (ρe), resulting in 2n + 2 degrees of freedom where n is the number of finite elements.

3.2 Optimization Formulation

We are now ready to consider the optimization problem. For a typical thermal problem (example: see Figure

2), our objective is to minimize the thermal compliance (see Gersborg [14], Gao [13], Li [19], [10]). Here we rely

on topology optimization (TO) [1], [31], [9] ) where thermal compliance C is defined as in equation 7 with Θ

being the temperature and f being the imposed heat load.

Observe that we have imposed a global volume constraint on the domain (Equation 8), where ve is the

volume of the mesh element and Vf is the desired volume fraction. The behavior of the system is governed

by a system of algebraic equations (9) derived from the finite element discretization of a steady state heat

conduction problem. [K] is the stiffness matrix, {Θ} is the temperature field and { f} is the external heat

applied. The constraints for the build orientation is given by Equation 10 and 11. The constraint for fiber

orientation is given by Equation 12 and Equation 13 sets the limit for density.
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min
Ω⊂Ω0

C =
∫
Ω

f ΘdΩ = { f}T{Θ} (7)

s.t. g(ρ) ≡
∑
e

ρeve

Vf ∑
e

ve
− 1 ≤ 0 (8)

[K]{Θ} = { f} (9)

α0 ∈ [0, 2π] (10)

β0 ∈ [0, 2π] (11)

θe ∈ [0, π] ∀e (12)

ρe ∈ [0, 1] ∀e (13)

3.3 Sensitivity Analysis

In order to perform gradient based optimization, the sensitivity of the objective and constraints, with respect

to the design variables is derived in this section.

Objective Sensitivity

Recall that the thermal compliance is given by:

C = { f}T{Θ} ≡ {Θ}T [K]{Θ} (14)

Differentiating equation (14) with respect to a generic design variable xi, we have,

∂{C}
∂xi

=
∂{Θ}

∂xi

T
[K]{Θ}+ {Θ}T ∂[K]

∂xi
{Θ}+ {Θ}T [K]

∂{Θ}
∂xi

(15)

Neglecting design-dependent loads we have, ∂ f
∂xi

= 0, Equation (9) is differentiated with respect to design

variable xi to get,

∂{Θ}
∂xi

= [K]−1 ∂[K]

∂xi
{Θ} (16)

Inserting (16) into (17) results in:
∂{C}
∂xi

= −{Θ}T ∂[K]

∂xi
{Θ} (17)

In particular, we have

∂[K]

∂ρe
=

∫∫∫
Ωe

[B]T
∂[k]e
∂ρe

[B]dΩe (18)
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where [B] is the gradient of the shape function matrix and,

∂[k]e
∂ρe

= pρ
p−1
e ([R(α0, β0, θe)]([k̂]− [k0])[R(α0, β0, θe)]

T) (19)

Similarly, the sensitivity with repect to θe is given by:

∂[K]

∂θe
=

∫∫∫
Ωe

[B]T
∂[k]e
∂θe

[B]dΩe (20)

where,

∂[k]e
∂θe

= ρ
p
e (

∂[R(α0, β0, θe)]

∂θe
([k̂]− [k0])[R(α0, β0, θe)]

T + [R(α0, β0, θe)]([k̂]− [k0])
∂[R(α0, β0, θe)]T

∂θe
) (21)

The sensitivity with respect to build orientation angle α0 is given by,

∂[K]

∂α0
= ∑

e

∫∫∫
Ωe

[B]T
∂[k]e
∂α0

[B]dΩe (22)

where ∂[k]e
∂α0

follows an expression similar to that of Equation 21. The sensitivity with β0 follows suit with α0

and is omitted here for sake of brevity.

Note that the sensitivity with respect to the build orientation angles (Equation 22) is summed over all elements.

This is in contrast to sensitivity with respect to infill densities (Equation 19) and fiber orientation (Equation 20).

In other words, build orientation is global, while infill density and fiber orientation apply to each element.

Constraint Sensitivity

The global volume constraint in Equation (8) can be expressed as

g(ρ) ≡
∑
e

ρeve

Vf ∑
e

ve
− 1 ≤ 0 (23)

Thus,
∂g
∂ρe

=
ve

Vf ∑
e

ve
(24)

and the sensitivity is zero with respect to θe, α0, and β0. The box-constraints limiting the range of the design

variables given by Equations 10, 11, 12 and 13 are considered implicitly by the globally convergent method of

moving asymptotes (GCMMA) solver used in this paper [34]. The finite element solver is discussed in Section

3.5.

3.4 Optimization Algorithm

The optimization algorithm utilizes GCMMA [34], and is described below:
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Algorithm 1 Build, Infill and Fiber Optimization
1: procedure BUILDOPT(Vc) . Max. Vol. Frac. Vc ∈ [0, 1]
2: i = 0 . Iteration Index
3: φ = {ρ̄, θ̄, α0, β0} . Opt. Variables
4: ∆ = 1.0 . Design Change
5: while ∆ > ε and i ≤ MaxIter do
6: i← i + 1
7: [K]← (φ) . via Eq. 5
8: {Θ} ← [K]−1{q} . Deflated-Preconditioned Assembly-Free solver
9: C ← ({Θ}, {q}) . via Eq. 14

10: g← (ρ̄, Vc) . Vol. Constraint Eq.8
11: ( ∂C

∂ρe
, ∂C

∂θe
, ∂C

∂α0
, ∂C

∂β0
, ∂g

∂ρe
) . via Eq. 27,21,22, 24

12: φi ← (C, g, ∂C
∂ρe

, ∂C
∂θe

, ∂C
∂α0

, ∂C
∂β0

, ∂g
∂ρe

) . GCMMA Solver [34]

13: ∆ = (|φi
e − φi−1

e |)

3.5 Assembly Free Finite Element Analysis

In classic finite element analysis, the element matrices are typically assembled into a global matrix, and

solved during each step of the optimization process. In this paper, we will apply assembly-free FEA where the

global stiffness matrix is neither assembled nor stored [40]. Instead, the fundamental matrix operations such

as the sparse matrix-vector multiplication (SpMV) are performed in an assembly-free elemental level, i.e., an

SpMV operation of [K]{u} is interpreted as follows:

[K]{u} ≡∑
e
([K]e{u}e) (25)

This idea was first proposed in 1983 [16], but has resurfaced due to the surge in fine-grain parallelization

on multi-core frameworks. The technique reduces memory footprint leading to decreased computational cost,

paving way for higher mesh resolution. It was shown in [18] how employing an assembly-free finite element

solver may accelerate the convergence of AM simulation, entailing only entails minor modifications.

Consider the objective sensitivity in Equation (17) which can then be expressed as,

∂{C}
∂xi

= −{Θ}T ∂[K]

∂xi
{Θ} = −∑

e
{Θ}T

e
[K]e
∂xi
{Θ}e (26)

In particular, the sensitivity with respect to density becomes,

∂{C}
∂ρe

= −∑
e
{Θ}T

e
∂[K]e
∂ρe
{Θ}e (27)

We notice that employing a voxel mesh, all the elements are geometrically congruent. Further, on account of

anisotropy and local variation in material property (thermal conductivity is expressed as a function of element

density and element fiber orientation), the elements are not behavioral congruent. In the current work, we

propose a formulation to exploit the geometrical congruency, and precompute the part of the stiffness matrix

capturing the geometrical congruence and store them as templates. Then, on-the-fly, we only compute the

9
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behavioral aspect of each element. This allows us to reduce the amount of computation considerably. To

illustrate, we may express Equation 18 as

∂[K]

∂ρe
=

∫∫∫
Ωe

[B]T
∂[k]e
∂ρe

[B]dΩe =
3

∑
i=1

3

∑
j≥i

∂[k]ije
∂ρe

∫∫∫
Ωe

[B]T [J ]ij[B]dΩe =
3

∑
i=1

3

∑
j≥i

∂[k]ije
∂ρe

[KJ ]ij (28)

Similarly, we may express Equation 20 as,

∂[K]e
∂θe

=
3

∑
i=1

3

∑
j≥i

∂[k]ije
∂θe

[KJ ]ij (29)

Similar expression follows for sensitivity of the constraint with respect to the build plane orientation angles α0

and β0.

[J ]ij ∈ R3×3 is a matrix with a value of 1 at (i, j), (j, i) and 0 elsewhere. Note that the thermal conductivity

tensor [k] ∈ R3×3 is symmetric. This results in a total of 3×4
2 = 6 distinctive entries, i.e., a total of six templates.

The matrices [KJ ]ij ∈ R8×8 are pre-computed and stored as templates. During the computation of the solution,

only the expressions given in Equations 19 and 21 (and likewise for ∂[k]e
∂α0

and ∂[k]e
∂β0

) are computed and are

multiplied as scalars with the pre-computed templates. This illustrates the separation of geometric congruence

withing the mesh and elements from the behavioral incongruous. This reduces the computational cost as a

matrix of reduced size (here 3× 3) is computed instead of the full stiffness matrix (here 8× 8) for every element.

Finally it is important to note that this combined with the assembly free-framework can be accelerated with

fine-grain parallelization.

The matrix system in Equation 9 is usually solved in an iterative fashion, with the conjugate-gradient (CG)

method being the common method. Various techniques are utilized to accelerate the convergence of the sys-

tem. The current formulation uses physics based deflation adapted to solve thermal systems from [41] to

accelerate the convergence of the conjugate-gradient solver. The concept of deflation was introduced in [29].

The idea is to construct a matrix referred to as the deflation space, whose columns approximately span the low

eigenvectors of the effective stiffness matrix using agglomeration techniques. The method was illustrated in

conjunction with the assembly-free method by [22] to solve structural dynamics physics. A sharp decrease

in the number of conjugate-gradient iterations to solve the system is observed and is reported in section 4.4.

The current work adapts this formulation for thermal system and also extends to consider the case where the

elements don’t exhibit behavorial congruence. The system is further accelerated using a Jacobi-preconditioner

[28] which is a common practice to improve the condition number of the effective stiffness matrix.
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4 Numerical Experiments

We now demonstrate the proposed method through several examples. The examples considered, and the

corresponding sub-sections, are summarized in Table 2. For example, in sub-section 4.1.1, we optimize just the

infill, by assuming a fixed build direction and fiber orientation. Similarly, in sub-section 4.1.2, we optimize just

the fiber orientation, by assuming a fixed build direction, and fixed infill, and so on.

Section Build Dir Fiber Orient. Infill
4.1.1 × ×
4.1.2 × ×
4.1.3 ×
4.2 ×
4.3

Table 2: Summary of various examples considered

The computational performance is then summarized in Section 4.4.

4.1 Fixed Build Orientation

In this section, the build orientation is assumed to be fixed, while the infill and/or the fiber orientation is

optimized.

4.1.1 Infill Optimization

Consider a three-dimensional plate, with a thickness of 0.5mm, illustrated in Figure 3. The thermal boundary

conditions apply across the thickness as illustrated in Figure 3 where T = 0◦C and the heat flux Q = 104 W/m2.

The build direction is assumed to be fixed along the thickness direction. Further, the material is assumed to

be isotropic with k = 0.77 [W/m-K], and therefore the fiber orientation is also not a design variable. The only

design variable is the infill topology; the thermal compliance must be minimized for a target volume fraction

of 0.5. For finite element analysis, the domain is discretized into 105 voxels, with one layer across the thickness.

Q

T

100 mm

50 mm
25 mm

0.50 mm

Build Dir.

Figure 3: Illustration of a plate problem with thermal boundary conditions.
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To optimize the infill, all elements are assigned a density of 0.5 (the target volume fraction). The optimization

algorithm described earlier is now exploited to find the optimal infill topology that minimizes the thermal

compliance. The optimization terminates when the relative change in the thermal compliance is less than 10−4.

The convergence is illustrated in Figure 4, together with the optimal infill topology. The units for compliance

is Joules. Observe that the topology aligns with the flow of heat, as expected.

Figure 4: Optimization of infill topology.

4.1.2 Fiber Optimization

Next, we consider optimizing just the fiber orientation for the above example. Specifically, the material is

assumed to be PA6-CuF-25 (see Table 1). The anisotropic conductivity is an impetus for preferential fiber

orientation. The build direction is fixed as before, and the infill is also fixed at 100%. All elements are initially

oriented with θe = 0◦. After optimization, Figure 5 illustrates the orientation of the fibers obtained; this is

consistent with expectations.
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4.1.3 Infill and Fiber Optimization

Next, we combine fiber and infill optimization for the same example. All elements have an initial density of

0.5, and the fibers are oriented at θ = 0◦. Figure 6 illustrates the convergence, and the resulting topology, with

fiber orientation. We observe a significant improvement in performance in comparison to only optimizing the

infill (section 4.1.1) or the fibers (section 4.1.2) . The histogram in Figure 7(a) captures the distribution of fiber

orientation.

Figure 6: Optimization of infill topology and fiber orientation.
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Figure 7(b) illustrates the final density distribution; the penalization ensures that the densities take extremal

values.

Angle (rad)

Fr
eq

u
en

cy

(a) The histogram of the fiber orientation angles θe upon optimiza-
tion.

(b) The histogram of densities ρe upon optimization.

Figure 7: Distribution of Optimized variables.

4.2 Build Orientation and Infill Optimization

We now illustrate an example where the benefits of optimizing the build direction becomes evident. Con-

sider the geometry shown in Figure 8 with T = 0◦C on the top face, and a heat flux of 103 W/m2 on the bottom

face. The material is assumed to be isotropic, i.e., fiber orientation is disregarded. However, observe that de-

pending on the build direction, inter-layer anisotropy will be induced. For example, if the build direction is

along Z-axis, then k‖ = k⊥ = 0.76 [W/m-K] while kz = 0.45 [W/m-K]. For finite element analysis, the domain

was meshed with 100,000 voxels.

Q

T

X

Y

Z

Figure 8: A cuboidal geometry with a center hole and the associated boundary conditions.
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To isolate the impact of build direction, two sets of optimization studies were carried out. In the first set,

the build direction was fixed along Z-axis; observe that this is sub-optimal since the heat sink and source

are separated along the Z-axis. The infill was then optimized for 3 different volume fractions- 30%,50% and

75%. The final topology and compliance are reported in the second column of Table 3. In the second set, the

build-direction was also optimized (with an initial guess along Z-axis). The resulting topology and thermal

compliance, together with the optimal build-direction are reported in the third column. As one can observe,

the compliance reduces significantly when the build direction is optimized; in each case, the optimal build

direction is approximately along X-axis.

Volume Fraction (%) Fixed Build Dir. Optimized Build Dir.

30

C = 13.20 C = 4.54

50

C = 4.33 C = 1.56

75

C = 2.42 C = 1.00

Table 3: Infill optimization, with and without build direction optimization.

4.3 Complete Optimization

In this section, we highlight the full potential of the solver by simultaneously optimizing the infill topology,

the fiber orientation and the build direction, for the geometry illustrated in Figure 9 . The prescribed boundary

conditions are a fixed temperature of 0◦C and a heat flux of 104 [W/m2] on the tip of the rocker arm and a

flux of 5× 104 [W/m2] on the circular face. We assume the material be PA6-CuF-25 (table 1) with kz = 0.45

[W/m-K]. The desired volume fraction is 0.5. The design is discretized with 50,000 voxels. As before, the initial

density of all the elements is 0.5, the orientation of the fibers is 0◦, the initial build direction is along the X axis.
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We plot the convergence of the objective in Figure 10. The plot shows the topology at various instances of

the optimization process with the build vector at that instance. We observe a sharp decrease in the compliance

between the first and second iteration. The example was chosen to exaggerate the effect of build orientation.

A sharp gradient in the build orientation design variable guides the initial behavior of the optimizer. Observe

that the optimizers considers various orientations to finally arrive at the optimal; an almost 10-fold decrease

in compliance is observed.

Fixed Temperature

Heat Flux

Figure 9: Illustration of the design domain of a Rocker-arm of Honda Supra-X 100 cc (grabcad.com) with
boundary conditions.

Figure 10: Plot of compliance with build direction.

4.4 Performance

All experiments were conducted on a desktop PC equipped with an Intel-i7 12-core processor with 32 GB

RAM running at 3.2 GHz. Table 4 reports the time taken, and the number of optimization iterations required

to solve various problems discussed above. In addition, the ratio between the final to initial compliance is

reported to gauge the ratio of computational effort to performance improvement derived.
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Section #Elems #Iter Total time [min] C f /C0
4.1.1 1e5 27 6.14 0.28
4.1.2 1e5 32 23.3 0.31
4.1.3 1e5 57 38.1 0.10

4.2 (fixed build; Vf = 0.5) 1e5 27 6.7 0.30
4.2 (opt build; Vf = 0.5) 1e5 78 110.3 0.08

4.3 5e4 80 75.8 0.05

Table 4: Performance statistics for different models

Further, it was observed that the solver spent 75% to 85% of time in solving the finite element system. To

this end, as discussed, we employ a Jacobi preconditioner and physics based deflation as discussed earlier to

accelerate the convergence. The effect of this can be seen in Table 5. To conduct this benchmark study, we

solve the problem illustrated in Figure 8 with boundary conditions as prescribed. A voxel mesh with 5× 104

elements was employed. We see a speed-up of 7 is achieved by employing the accelerators, thus cementing

their value in achieving faster results.

Preconditioner Deflation # CG Iter Time/FEM iter [s]
× × 283 18.04

× 260 16.62
× 21 2.74

19 2.55

Table 5: Timing results for various solver configurations.

5 Conclusion

The main contribution of this paper is an integrated framework for the simulataneously optimization of

the build direction, infill topology with the raster fiber orientation of SFRP components. A global volume con-

straint was imposed to drive the optimizer towards minimizing compliance. The layer-wise printing paradigm

of AM was of central focus and methods were proposed to mitigate the consequence of the anisotropic material

characterization. Further, the numerical experiments demonstrated that one may leverage fiber orientation to

reap maximum benefit.

A limitation of FDM is the need for support material extending from the build plate. The present formulation

optimizes the infill for improved functional performance but provides no guarantee that the infill design is

self supporting. Also, the optimization of build orientation takes only the effect of material anisotropy, and

does not consider its impact on sacrificial support. Constraints such as minumum feature size, surface finish,

overhang surfaces, enclosed voids have not been considered in the formulation. Further post-processing might

be required to produce smooth transitions in fiber orientation. Some of these limitations will be addressed in

future work.
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